
28 570684 Ch22.qxd 3/31/04 2:59 PM Page 276

276 Part IV: C Level

� Functions that produce only output: These functions generate a value or
string, returning it to the program — for example, a function that may tell
you where the Enterprise is in the Klingon Empire. You call the whereEnt()
function, and it returns some galactic coordinates.

Any function can fall into any category. It all depends on what you want the
function to do. After you know that, you build the function accordingly.

How to send a value to a function

Sending a value to a function is as easy as heaving Grandma through a plate
glass window. Just follow these steps:

1. Know what kind of value you’re going to send to the function.

It can be a constant value, a number or string, or it can be a C language
variable. Either way, you must declare that value as the proper type so
that the function knows exactly what type of value it’s receiving: int,
char, or float, for example.

2. Declare the value as a variable in the function’s parentheses.

Suppose that your function eats an integer value. If so, you need to
declare that value as a variable that the function will use. It works like
declaring any variable in the C language, though the declaration is made
inside the function’s parentheses following the function’s name:

void jerk(int repeat)

Don’t follow the variable declaration with a semicolon! In the preceding
example, the integer variable repeat is declared, which means that the
jerk() function requires an integer value. Internally, the function refers
to the value by using the repeat variable.

3. Somehow use the value in your function.

The compiler doesn’t like it when you declare a variable and then that
variable isn’t used. (It’s a waste of memory.) The error message reads
something like jerk is passed a value that is not used or
Parameter ‘repeat’ is never used in function jerk. It’s a
warning error — and, heck, it may not even show up — but it’s a good
point to make: Use your variables!

4. Properly prototype the function.

You must do this or else you get a host of warning errors. My advice:
Select the line that starts your function; mark it as a block. Then, copy it
to up above the main() function. After pasting it in, add a semicolon:

void jerk(int repeat);

No sweat.

